22 Mar 09:57 avatar

Предсказание рисков и рейтингование. Часть №2


Автор: С.А.Шумский

Предсказание рисков и рейтингование. Часть 1

Предсказание рисков банкротств
Сначала приведем несколько цифр, иллюстрирующих «цену вопроса». Мировой рынок только межбанковских кредитов оценивается в $38 трлн. Это почти в два раза превышает мировой объем ценных бумаг. Естественно, что оценка риска невозврата кредитов имеет для банков первостепенное значение. (В случае страховки, этот риск, перекладывается на страховщика. Общий объем страховых премий в этой индустрии риска составляет $2.5 трлн.)

Количество банкротств в США на протяжении 80-х годов возрастало ежегодно примерно на 14%. В банковском секторе США число банкротств возросло с 50 в 1984 г. до 400 в 1991 г. Это, однако, составляет менее 3% от примерно 14000 действующих в США банков. В России же, например, только в 1996 г. лицензии были отозваны более чем у 10% из около 2000 зарегистрированных банков. Таким образом, предсказание банкротств, особенно в кризисных экономических условиях, является насущной задачей экономического анализа.

Если в проблеме рейтингования задачей нейросети было воспроизвести мнения экспертов о надежности корпорации, то нейросетевое предсказание банкротств основано на статистической обработке конкретных примеров банкротств. В такой постановке задача нейросети — самой стать экспертом, определяющим финансовую стабильность корпорации, основываясь исключительно на объективной информации — показателях финансовой отчетности. Обычно от нейросети требуется оценить вероятность банкротства через определенный промежуток времени (например, через год или через два года) по доступной на данный момент финансовой отчетности. В качестве входов используют финансовые индикаторы — отношения балансовых статей, наиболее полно отражающие определенные стороны финансового положения фирмы.

Исторические корни


Пионерская работа Альтмана в этом направлении датируется 1968 годом (Altman, 1968). Используя метод линейного дискриминантного анализа он выявил пять наиболее значимых финансовых индикаторов, влияющих на предсказание банкротств:
  • (Оборотные средства / Общий размер активов) — характеризует денежные активы фирмы, т.е. ее способность мобилизовать ресурсы для немедленной уплаты долгов.
  • (Нераспределенная прибыль / Общий размер активов) — прибыль после уплаты налогов и выплат акционерам, которая остается в распоряжении корпорации, например, для реинвестирования, характеризует источник погашения долгов.
  • (Прибыль до выплаты налгов и процентов по вкладам / Общий размер активов) — характеризует общую эффективность управления капиталом.
  • (Рыночная капитализация / Общий размер долгов) — характеризует отношение собственного капитала к заемному, т.е. эффективный размер долга.
  • (Объем продаж / Общий размер активов) — характеризует активность использования фирмой своих ресурсов.
В последующих работах разные авторы дополняли или видоизменяли список ключевых финансовых индикаторов по своему усмотрению. Наиболее общий подход, видимо, состоит в использовании в качестве входов логарифмов укрупненных статей балансов и отчетов о прибылях/убытках. Нейросеть в этом случае сама выберет наиболее значимые линейные комбинации входов, которым будут соответствовать наиболее значимые отношения различных статей в нужных пропорциях. Использование индикаторов, с другой стороны, помогает в интерпретации результатов нейро-моделирования если воспользоваться, например, техникой прореживания связей и извлечения правил. Заметим, что использование описанных выше индикаторов лежит также в основе общепринятой методики рейтингования банков CAMEL.

Нейросетевое предсказание банкротств


Обобщая опыт сравнительного анализа предсказаний банкротств различными методиками (Trippi, Turban, 1993), отметим:
  • Нейросетевое моделирование обеспечивает наилучшую точность предсказания банкротств: порядка 90%, по сравнению с 80%-85% точностью для других статистических методик (дискриминантный анализ, логистический анализ, ID3, kNN).
  • При желании можно повысить «подозрительность» нейросети, обеспечив точность выявления банкротов вплоть до 99% — за счет снижения требований к ошибкам второго рода (класификации нормальной фирмы как банкрота). Это достигается путем увеличения веса ошибки первого рода (класификации банкрота как нормальной фирмы). В зависимости от конкретной практической задачи «подозрительность» сети можно произвольно регулировать.
  • Банкротства можно уверенно предсказывать за несколько лет до их фактического наступления, причем точность предсказания за два года практически не отличается от точности предсказания за год. Таким образом, неявные сигналы неблагополучия присутствуют в финансовой отчетности фирмы задолго до ее краха.
Обсуждение


Полезность обучения сети на примерах обанкротившихся фирм состоит также в том, что такая сеть вырабатывает дискриминантную функцию — численный показатель финансового здоровья фирмы, меру ее устойчивости. Однако, устойчивость не является единственным возможным критерием оценки деятельности фирмы [4]. Акционеры, например, заинтересованы не только в бесконечно долгом существовании фирмы, но и в получении достаточно весомой прибыли. Важно, кроме того, не только состояние фирмы на настоящий момент, но и характеристики существующих тенденций. Здесь значимым может оказаться другой набор факторов, дающий другую оценочную функцию. Так, высокая доходность может обеспечить повышение надежности в будущем. Между тем, неясно каким образом можно обучать нейросеть на «будущий успех» при отсутствии такого же четкого критерия успеха, каким является банкротство для неудачи.

Эти объективные трудности можно преодолеть, если вспомнить, что фирма существует не сама по себе, а в сообществе подобных ей фирм-конкурентов. И именно в сопоставлении с этим сообществом можно говорить о сильных и слабых сторонах ее деятельности. Эти рассуждения подводят нас к другой постановке задачи: комплексной оценки финансового состояния фирмы путем систематического сравнения ее показателей с показателями остальных участников данного рынка. Такой подход, рассмотренный в следующем разделе, не требует знания готовых ответов, т.к. основан на обучении без учителя.

Сравнительный анализ финансового состояния фирм
Сравнительный анализ, в отличае от рейтингования, предполагает введение не одной, а нескольких оценочных координат. Это позволяет лучше использовать имеющуюся информацию, более точно позиционировать фирму среди остальных. С другой стороны, для обозримости результатов сравнительного анализа, количество параметров сравнения должно быть по возможности минимальным. В узком смысле «обозримость» требует введения не более двух координат — чтобы относительная позиция фирмы могла быть представлена точкой на двумерной карте, а различные финансовые показатели могли быть визуализированы в виде двумерных поверхностей.

Постановка задачи


С математической точки зрения эта задача сводится к оптимальному сжатию информации о финансовом состоянии фирмы, т.е. отображении информации минимальным числом параметров при заданном уровне огрубления или минимизации потерь информации при заданном числе обобщенных координат. Для целей визуализации, выгодно ограничиться двухпараметрическим представлением. Это уже существенный шаг вперед по сравнению с однопараметрическим рейтингом.

Данные о российских банках


Для иллюстрации описываемого подхода далее [5] будут использованы данные Центрального Банка России о годовых балансах и отчетах о прибылях/убытках примерно 1800 российских банков за 1994, 1995 годы, предоставленные информационным агентством «Прайм». Каждый банк при этом описывается 30 финансовыми показателями — отношением балансовых статей к общей сумме активов банка. Подобная нормализация приводит все статьи к единому масштабу, сглаживая различия между крупными и мелкими банками, составляющие несколько порядков величин. Из этих 30 параметров нам предстоит оптимальным образом сконструировать две обобщенные координаты.

Сечения


Главный вопрос теперь — как выбирать эти обобщенные координаты. Можно, например, воспользоваться сечениями имеющихся многомерных данных, иными словами — просто выбрать два «наиболее важных» с точки зрения экспертов параметра балансов и таким образом отобразить на двумерной карте положение всех фирм. Для российских банков подобное представление информации практикует журнал «Эксперт» (см Рисунок 2).


Рисунок 2. Положение пятнадцати крупнейших российских банков в 1996 г. в координатах «Надежность» — Доходность.
(По материалам журнала «Эксперт»)



Согласно такому подходу надежность банка характеризуется одним финансовым показателем — отношением собственного капитала к привлеченному. В первой половине этого обзора мы видели, однако, что анализ банкротств выявляет как минимум пять (а то и восемь) значимых финансовых показателей, влияющих на надежность.

Линейное сжатие информации — метод главных компонент


Более общий подход — использовать не две отдельные компоненты, а две линейные комбинации всех 30 исходных параметров, наилучшим образом представляющие имеющиеся данные (см. Рисунок 3).


Рисунок 3. Линейная аппроксимация многомерных (здесь — трехмерных) данных


Каждый банк представлен точкой в 30-мерном пространстве и задача состоит в проведении двумерной плоскости в этом пространстве, обеспечивающей минимальное среднеквадратичное отклонение имеющихся точек от этой плоскости:


Как мы знаем подобное линейное приближение дается методом главных компонент. Если действительное расположение точек не сильно отклоняется от плоскости, этот метод может дать неплохое начальное приближение. Однако, оказывается, что в даном случае это не так. Среднеквадратичное отклонение для случая двух главных компонент оказалось равным почти половине от общей дисперсии: EL=0.47

Таким образом, даже оптимальный вариант линейного сжатия не дает возможности визуализировать финансовое положение банков. Оно может, тем не менее, оказаться полезным, в частности, для анализа значимости балансовых статей. Так, увеличение числа главных компонент постепенно дает все лучшее и лучшее приближение имеющегося массива данных (см. Рисунок 4).


Рисунок 4. Точность воспроизведения данных как функция числа главных компонент.


Например, 10 главных компонент обеспечивают вполне приемлемую общую точность 94% (т.е. EL=0.06). При общем числе входов равном 30, это означает 3-кратное сжатие информации. Такое сжатие оказывается возможным из-за существенных корреляций между отдельными статьями в балансовой отчетности. При этом те статьи, которые дают наибольший вклад в главные компоненты, восстанавливаются по ним с наибольшей точностью.

Степень восстановления исходных данных по ограниченному числу главных компонент свидетельствует о том, насколько согласованны данные в этих статьях между собой во всем массиве имеющейся информации, т.е. насколько содержащаяся в них информация значима для выявления индивидуальных отличий. Рисунок 5 показывает, что около 20 статей восстанавливаются по 10 главным компонентам с относительно высокой точностью. Это как раз те статьи, кторые дают основной вклад в главные компоненты. Остальные статьи гораздо менее значимы для сравнительного финансового анализа, в частности, в силу незначительности совокупной доли активов в этих статьях балансов.


Рисунок 5. Значимость статей балансов и отчетов о прибылях/убытках, определенная по степени их восстановления по 10 главных компонентам


Нелинейное сжатие информации — карты Кохонена


Итак, линейная статистическая обработка данных не способна выделить два ведущих параметра, описывающих финансовое состояние российских банков с приемлемой точностью. В этой ситуации естественно обратиться к нелинейному статистическому анализу, т.е. к нейросетевому моделированию.

Напомним, что методом, дающим оптимальное представление информации в виде координат двумерной сетки, является построение топографических карт (карт Кохонена). Напомним в двух словах суть этой методики. В многомерное пространство данных погружается двумерная сетка. Эта сетка изменяет свою форму таким образом, чтобы по возможности точнее аппроксимировать облако данных. Каждой точке данных ставится в соответствие ближайший к ней узел сетки. Таким образом каждая точка данных получает некоторую координату на сетке. Такое отображение локально непрерывно: близким точкам на карте соответствуют близкие точки в исходном пространстве (обратное, вообще говоря, не верно: близким точкам в исходном пространстве могут соответствовать далекие точки на карте — такова цена понижения размерности). Таким образом, распределение данных на двумерной карте позволяет судить о локальной структуре многомерных данных.

Синаптические веса нейрона в сети Кохонена являются его координатами в исходном многомерном пространстве. Обучение сети, т.е. нахождение положения узлов карты в многомерном пространстве происходит в режиме «победитель забирает все». Данные по очереди подаются на входы всех нейронов и для каждого входа определяется ближайший к нему нейрон. Обучение состоит в подгонке весов нейрона-победителя и его ближайших соседей минимизурующих отклонение данных от нейронов-победителей. Постепенно сеть находит равновесное положение, оптимально аппроксимирующее данные (см. Рисунок 6).


Рисунок 6. Нелинейная аппроксимация массива многомерных данных двумерной поверхностью.


Если линейный статистический анализ пытается аппроксимировать данные плоскостью, то нелинейный — использует для этих целей двумерную поверхность, что позволяет, в принципе, добиться гораздо более высокой точности аппроксимации. Так, в нашем случае, суммарное расстояние от данных до ближайших к ним узлов топографической сетки


составляет всего ENL=7.8% (сравнительно с EL=0.47 ошибки линейной аппроксимации).

Таким образом, можно с приемлемой точностью описать финансовое состояние российских банков используя всего лишь два обобщенных финансовых индикатора, а именно — две координаты на двумерной карте Кохонена. Каждый банк по состоянию своего баллансового отчета отображается конкретной ячейкой на карте. Ячейки с одинаковыми координатами содержат банки со сходным финансовым состоянием. Чем дальше на карте координаты банков, тем больше отличается друг от друга их финансовый портрет.


Рисунок 7. Пример содержимого ячейки Т9 карты Кохонена для российских банков (регистрационные номера и названия банков).


Так, например, Рисунок 7 иллюстрирует содержимое конкретной ячейки на карте Кохонена российских банков, содержащей 20x20 ячеек (т.е. 400 нейронов).

Предсказание рисков и рейтингование. Часть 3

[4] — Биологическая эволюция демонстрирует многочисленные примеры «слишком успешной» адаптации к определенной экологической нише, приводящей к быстрому вымиранию при резком изменении условий внешней среды.
[5] — Наше изложение будет следовать работе (Shumsky, Yarovoy, 1998), выполненной по заказу и при финансовой поддержке агентства «Прайм».

0 комментариев

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.